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Abstract: Automated analysis of the scientific literature using natural language processing
(NLP) can accelerate the identification of potentially unexplored formulations that enable
innovations in materials engineering with fewer experimentation and testing cycles. This
strategy has been successful for specific classes of inorganic materials, but their general
application in broader material domains such as bioplastics remains challenging. To begin
addressing this gap, we explore correlations between the ingredients and physicochemi-
cal properties of seaweed-based biofilms from a corpus of 2000 article abstracts from the
scientific literature since 1958, using a supervised word co-occurrence analysis and an
unsupervised approach based on the language model MatBERT without fine-tuning. Using
known relations between ingredients and properties for test scenarios, we discuss the
potential and limitations of these NLP approaches for identifying novel combinations of
polysaccharides, plasticizers, and additives that are related to the functionality of seaweed
biofilms. The model demonstrates a valuable predictive ability to identify ingredients
associated with increased water vapor permeability, suggesting its potential utility in
optimizing formulations for future research. Using the model further revealed alterna-
tive combinations that are underrepresented in the literature. This automated method
facilitates the mapping of relationships between ingredients and properties, guiding the
development of seaweed bioplastic formulations. The unstructured and heterogeneous
nature of the literature on bioplastics represents a particular challenge that demands ad
hoc fine-tuning strategies for state-of-the-art language models for advancing the field of
seaweed bioplastics.

Keywords: seaweed; bioplastics; natural language processing; masked language model; BERT

1. Introduction
Bioplastics manufacturing is a subject of great interest due to the harmful effects of

plastic film on the environment. The majority of plastic bags and single-use packaging
materials, made of petrochemical materials, are not recycled, ultimately breaking down
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into microparticles in landfills or oceans, leading to environmental degradation and even
contamination of our food supply [1]. Thus, the development of environmentally friendly films
with performance comparable to traditional polymers has become increasingly relevant [2,3].

Bioplastic films made from seaweed polysaccharides have emerged as a promising
solution to address the environmental concerns associated with plastic film production [4].
Seaweed-based raw materials are fully biodegradable and can be cultivated using envi-
ronmentally friendly practices that support ecosystem sustainability. Agar, alginate, and
carrageenan are commonly used polysaccharides for manufacturing biopolymeric films
from seaweed [5–7]. However, films made from a single seaweed material often have poor
properties, such as mechanical or water vapor barrier properties [8,9]. To address this
issue, additives or other biomaterials can be incorporated to enhance the properties of
seaweed films.

Data mining has gained great relevance in recent decades due to its potential in nat-
ural language processing and machine learning modelling techniques [10]. Bioplastics
datasets and regression models have been developed for assisting the experimental devel-
opment of seaweed-based bioplastics [11,12]. Data mining techniques can be used to create
probabilistic models that detect multi-level word associations [13,14] to address different
problems involving large corpuses of specific text, such as the extraction of technical infor-
mation. These techniques involve pipelines of natural language processing (NLP) tasks
that have focused primarily on biomedical tasks [15] but, more recently, NLP and Large
Language Models (LLMs) have found relevant applications in chemistry [16] and materials
science [17,18]. While previous applications in materials science have focused on material
classes such as inorganic glasses, ceramics, and alloys [17], our study is the first to apply
these techniques to biopolymeric materials.

In this work, we build a corpus of 405,404 words based on 2000 scientific abstracts on
seaweed biopolymer to analyse frequencies and co-occurrences of polysaccharides, plasti-
cizes, and additives and physical properties of reported films. We use a Bag-of-Words (BoW)
approach to obtain a co-occurrence matrix that identifies combinations of common and rare
ingredients used in the literature, without assigning metrics of performance with respect to
properties. We then explore the ability of two transformer-based Large Language Models
(LLMs) pre-trained on a general material science corpus to assess the potential performance
of commonly used combinations of ingredients and properties. This approach was con-
ducted using prompts using Masked Language Modelling (MLM) in sentences designed to
qualitatively interpret the relationship between compounds in the BoW. The overall NLP
pipeline used in this work is illustrated in Figure 1. Our findings indicate that LLMs could
suggest correlations between certain ingredients and properties, as confirmed by selected
literature reports, but limitations in their ability to suggest new experiments remain.
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Figure 1. NLP pipeline used in this work. We extracted abstracts from various scientific pub-
lications and employed a Bag-of-Words model to analyse the co-occurrence of ingredients and
properties of thebioplastics. Additionally, the Bag-of-Words model was utilized for an unsupervised
approach, where different word representations were combined in the MatBERT model.
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2. Materials and Methods
2.1. Abstract Corpus

A Scopus search was conducted to gather publications on seaweed biopolymers, using
keywords such as “Alginate”, “Agar”, “Carrageenan”, “Seaweed” or “Algae”, and “Film”
or “Packaging”. Research articles and reviews from 1958 to 2022 were included, resulting
in 2000 publications. The metadata and abstracts of each publication were downloaded,
and publications lacking a DOI or not written in English were excluded. The number of
seaweed-based bioplastic abstracts is at least two orders of magnitude lower than for other
NLP studies in materials science [18]. The search keywords are listed in Table 1. The list of
abstracts and search keywords can be found in the article’s GitHub repository, available
in [19].

Table 1. List of keywords for searching articles in Scopus related to seaweed-based materials and
bioplastics or related packaging materials.

(TITLE-ABS-KEY (alginate OR agar OR carrageenan OR seaweed OR macroalgae)
AND
TITLE-ABS-KEY (bioplastic OR bio-plastic OR “biopolymer film” OR film OR “plastic
bag” OR packaging OR biocomposite OR bio-composite))

2.2. Data Pre-Processing

To prepare the text data for analysis, pre-processing techniques such as stop word
removal and lemmatization were used. Care was taken to ensure that the original meaning
of the words in the abstracts was preserved after pre-processing. The resulting abstract
corpus contained 276,490 words, after pre-processing.

2.3. Bag of Words and Co-Occurrence Analysis

A bag of words (BoW) was created by selecting ingredient names and properties from
a list of 20 review articles covering various types of biofilms, constituent components,
and characterization of their properties. Commonly reported names of ingredients and
material properties were included in the BoW, giving a total of 255 ingredients, classified
in 6 categories, and 111 material properties classified in 10 categories. To process the
abstracts using the BoW as input to obtain word frequencies and word co-occurrences,
the following steps were taken: tokenize the abstracts to split them into individual words,
create a vocabulary of unique words using a set data structure, count the frequency of each
word in each abstract using a dictionary, create a co-occurrence matrix that shows how
often each word co-occurs with every other word in an abstract, count co-occurrences by
iterating through each abstract, and finally normalize the matrix by dividing each entry by
the total number of co-occurrences to make the values interpretable and comparable across
different abstracts. Co-occurrence matrices help to visualize relationships and patterns
between words. The BoW dictionary could be updated and refined over time as new
insights and knowledge are gained in the field.

2.4. Masked Language Modelling

MLM is a pre-training method and is utilized for how BERT is pre-training, which
involves selectively masking (hiding) 15% of the words or tokens in the input within a text
and then training a language model to predict what those masked words should be. This
approach helps the model learn contextual information and relationships between words
in a given language [20]. MatBERT is a pre-trained language model that has been trained
using MLM and next-sentence prediction as the unsupervised training objectives. The
model has been trained on a general materials science corpus biased towards experimental
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synthesis topics such as oxides, energetic materials, magnetic materials, and synthesis
techniques [21]. The corpus of this training contains 2 million papers of materials science
literature, it has a maximum 512 input token size with 768 hidden dimensions, and the
vocabulary size for the tokenizer is 30,522 [12].

In using MatBERT with the MLM technique, prompts were generated to operate
differently in analysing the relationships between ingredients and water vapor permeability
in the context of film manufacturing. By masking the adjective in the prompts using
[MASK], the importance of that adjective in the relationship between ingredients and the
properties present in the bag of words is emphasized. Additionally, a score distribution
method was applied to the qualifier word to evaluate how meaningful it was. However, it
is crucial to acknowledge certain limitations associated with employing different prompts.
Variability in prompt structures may introduce biases or limitations in the model responses,
potentially influencing the overall findings [22].

3. Results and Discussion
3.1. Word Frequencies for Ingredients and Properties

Figure 2 shows the frequency of ingredient occurrence in a collection of documents
without repetition. The probability is calculated as the ratio between the number of
documents in which each ingredient appears and the total number of analysed documents.
The ingredients are grouped into different categories, indicated by a color coding that
facilitates visualization. The percent probabilities are shown, providing an overview of the
distribution of ingredients throughout the corpus. The color coding corresponds to the six
categories to which the ingredients in the BoW belong: organic, polysaccharide, inorganic,
protein, plasticizer, and synthetic polymer.
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Figure 2. Document-wise percent occurrence probability for ingredients from the bag of words (BoW)
in the corpus of 2000 scientific literature abstracts. Inset: percentage of classes of materials present in
the BoW that occur in the abstract corpus.

The percent distribution of ingredient classes is shown in Figure 2, inset. Polysaccha-
ride ingredients have the highest occurrence in the corpus. Additionally, both organic and
inorganic ingredients used as additives in various studies are identified, with inorganic
ingredients being more frequent.
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Figure 3 shows the percent probability of material property occurrences in a collection
of documents without repetition. The color coding indicates the categories to which the
material properties belong, which are listed in the inset. The properties categorized as
chemical, mechanical, antimicrobial, and optical are distributed relatively homogeneously.
The predominance of tensile strength suggests that this a focal property when evaluating
the performance of materials in various film applications. This relatively uniform represen-
tation of categories illustrates the balanced study of different types of material properties
in the field.
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3.2. Co-Occurrence Visualization

Figure 4 shows the matrix of ingredient–ingredient co-occurrences, given by the
instances in which two ingredients appear together in the dataset of 2000 abstracts. This
matrix is valuable for visualizing the data related to the co-use of ingredients in the literature.
By identifying pairs of ingredients in frequent associations, researchers can assess feasible
relationships for exploring potential film formulations. The matrix shows that alginate is
a central component in many combinations of ingredients, indicating its versatility and
wide application in various formulations. The dominant presence of polysaccharides in
combination with other ingredients reflects their importance in the publication record.

The lower right corner of the heatmap shows combinations of ingredients with less co-
occurrence, such as titanium/zinc or clay/montmorillonite, which may indicate a possible
relationship between them. Information about rate combinations could be valuable for
identifying research niches where the potential of these ingredients can be explored for
new applications or in improving the properties of existing materials.

Figure 5 shows the co-occurrence matrix of ingredients and material properties, ob-
tained by the number of times each combination of ingredient and material property occurs
in the dataset of article abstracts. Tensile strength, barrier properties, and antimicrobial
activity are some of the most frequency studied properties with a broad range of ingredients.
These correlations could be used to find trends in the data corpus for extracting approxi-
mate insights about seaweed-based bioplastics. However, there are limitations to working
with statistical word trends, which suggests the need for more advanced NLP approaches.
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3.3. Ingredients and Properties from Masked Language Models

In what follows, we use an unsupervised approach based on LLMs without fine-
tuning, which are pre-trained to identify materials. We explore the ability of this approach
to uncover relationships between different sets of ingredients and specific properties, which
can potentially lead to predictions for enhanced physical characteristics in bioplastics. The
advantage of using a pre-trained model over the BoW word-counting approach used above
is the ability of LLMs to benefit from contextual information in the corpus.

Specifically, we explore how organic and inorganic additives correlate with properties
of bioplastic films, particularly the water vapor permeability, using two Masked Language
Models (see Section 2). We adopt the Fill Mask method, which consists of filling in a
[MASK] in the sentence to predict possible replacements. The model is designed to describe
the way compounds influence specific properties, using natural language to focus on how
the combination of these compounds impacts the property depending on the output scores.

We assume hypothetical use cases of alginate membranes and films combined with
glycerol as a plasticizer. The “Additive” word was extracted from a predefined bag of words
containing a total of 185 organic and inorganic additives. We explored how the model
MatBERT suggests, based on the sentence context, the effect of adding a third compound
as an additive by assessing how this incorporation influences the water vapor permeability
of the resulting bioplastics. Table 2 shows the four sentences (S1–S4) that were used in
this Fill Mask test. We found that other sentence formulations with similar meaning gave
similar conclusions.

Table 2. Input sentences used in the MatBERT language model to interpret the relationship between
the different compounds and water vapor permeability. The ingredient {Compound 3} is taken from
a predefined bag of words of 185 organic and inorganic additives. On output, the model predicts a
[MASK] word with a score.

Masked Sentence

<S1> Membranes were prepared using alginate, a polysaccharide derived from seaweed, combined with glycerol as a
plasticizer. When {Additive} was incorporated as a secondary additive, the water vapor permeability of the membrane
[MASK], potentially affecting its suitability for packaging applications.
<S2> The film was produced by mixing alginate, extracted from seaweed, with glycerol to enhance flexibility. Upon
addition of {Additive}, the water vapor permeability of the resulting film [MASK], which could influence its
performance in moisture-sensitive environments.
<S3> By adding {Additive} to a film composed of alginate, a seaweed-based biopolymer, and glycerol, the water vapor
permeability [MASK]. This modification aims to optimize the barrier properties of the bioplastic for specific
applications.
<S4> By incorporating {Additive} as an additive in a film formulation based on alginate, a marine-derived biopolymer,
and glycerol, the water vapor permeability [MASK]. Such enhancements could improve the functional properties of
bioplastic films for use in sustainable packaging.

Table 3 shows the [MASK] outputs predicted by MatBERT for each input sentence
(S1–S4). For sentence S1, the model identifies propyl as the additive with the highest output
score for “Decreased” (0.54%). Propyl derivatives are chemical compounds that include the
propyl group (C3H7) as part of their structure, such as hydroxypropyl methyl cellulose
(HPMC) and hydroxypropyl cellulose (HPC), and they are used in the formulations of
different types of films and membranes [23–25]. Additionally, the scientific literature
mentions the use of propylene glycol (PG) as a plasticizer. The use of these compounds
in both contexts is related to modifying the properties of materials, such as water vapor
permeability or drug release, to enhance their performance in specific applications such
as packaging or drug delivery systems. Also, in relation to sentence S1, methyl (CH3)
is found as an additive that decreases water vapor permeability. While not specific to
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bioplastics, studies have demonstrated the incorporation of methyl in compounds such as
hydroxypropyl methyl cellulose (HPMC) and sodium carboxymethyl cellulose (Na CMC)
in the fabrication of mucoadhesive films [26,27]. The graft copolymerization of methyl
methacrylate (MMA) onto alginate has also been explored, which is also related to the
modification of properties of polymeric materials.

Table 3. Top-scoring additives in masked sentences for modifying water vapor permeability using
the MatBERT model. The output MASK in each of the sentences S1–S4 is a qualifier on the impact
on the water vapor permeability of adding a third component (additive) to a mixture of alginate
and glycerol.

Sentence Third Component Mask 1 Mask 2 Mask 3 Mask 4

S1

propyl decreased:
0.5401%

increased:
0.3574%

improved:
0.1314%

reduced:
0.0180%

methyl decreased:
0.5379%

increased:
0.3568%

improved:
0.0288%

reduced:
0.0194%

ethyl decreased:
0.5327%

increased:
0.3610%

improved:
0.0291%

reduced:
0.0183%

S2

grape seed increased:
0.6404%

decreased:
0.2639%

increases:
0.0296%

improved:
0.0115%

organic powdered cottonii increased:
0.6388%

decreased:
0.2562%

increases:
0.0327%

improved:
0.0141%

apricot kernel increased:
0.6370%

decreased:
0.2715%

increases:
0.0275%

reduced:
0.0122%

S3

watermelon increases:
0.3895%

decreases:
0.3522%

increased:
0.1024%

decreased:
0.0905%

gold increases:
0.3889%

decreases:
0.3080%

increased:
0.1302%

decreased:
0.0980%

spinach increases:
0.3887%

decreases:
0.3051%

increased:
0.1297%

decreased:
0.1005%

S4

lysozyme increased:
0.5653%

increases:
0.1306%

decreased:
0.1155%

improved:
0.0841%

peroxidase increased:
0.5588%

decreased:
0.1373%

increases:
0.1108%

improved:
0.0882%

wheat straw increased:
0.5558%

decreased:
0.1278%

increases:
0.1216%

improved:
0.0899%

However, it is difficult to discern whether a specific ingredient consistently decreases
or increases water vapor permeability. For instance, the incorporation of propylene glycol
alginate can lead to either a reduction or an increase in water vapor permeability and
water solubility, depending on its concentration in the formulation [28]. This dual effect
emphasizes the necessity of precise concentration control when recommending additives
for bioplastic fabrication. Moreover, when applying MatBERT to S1, we observe the model’s
sensitivity to contextual cues like “affecting”. The presence of this term may introduce a
negative bias, prompting the model to predict a negative adjective such as “decreased” for
the masked word.

For sentence S2, the model identifies grape seed extract as the additive with the
highest score for mask “Increased” (0.6404%), meaning it is likely to increase water vapor
permeability. This ingredient is less frequently reported in relation to membrane creation
than other additives, but there are reports highlighting its benefits in plastic and bioplastic
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films. The scientific literature shows that the phenolic compounds present in grape seed
extract have antioxidant properties and potential molecular interactions with biopolymers
that can modify the mechanical and functional properties of the material [29]. Additionally,
the use of grape seed extract as an active agent in edible films has been documented to
improve water vapor permeability, confirming the mask output while also giving antiviral
and antioxidant capabilities to films, suggesting its potential for enhancing performance in
specific applications [30]. The model also suggests that the use of organic powdered cottonii
(OPC) could influence film properties when using glycerol as one of its plasticizers, which is
also in agreement with reported results [31]. OPC is a product containing carrageenan and
derived from the Eucheuma cottonii seaweed. OPC is known for altering film characteristics
such as water vapor permeability. Although its specific use as an additive for alginate
has not been reported, OPC is related to seaweed as it contains carrageenan. While its
effectiveness has been evaluated in applications such as food packaging and edible coatings,
studies do not specify its use as an additive for alginate, nor an exact correlation between
the simultaneous use of a polysaccharide, a plasticizer, and OPC as an additive. Instead,
more complex combinations of OPC together with other additives and polysaccharides
have been explored, as is the case with the OPC which contains carrageenan, and its impact
largely depends on the specific formulation used.

For sentence S3, the model shows a decreasing trend in the difference between output
values, indicating a minimal difference between “decrease” and “increase” when it comes
to additives such as watermelon extract. Upon reviewing the literature on watermelon,
it was found that its use has been reported in multiple contexts, including as an active
ingredient and stabilizer for silver and zinc oxide nanoparticles when extracted as melanin
from watermelon seeds [32,33]. Additionally, watermelon rind has been utilized to add
value by creating edible alginate/glycerol films. This suggests that the model can rec-
ommend potential ingredients for specific applications based on the desired properties,
demonstrating its capability to identify suitable additives for enhancing the performance
of bioplastics.

In sentence S4, the model identifies three additives that, when incorporated into
polymer matrices, can alter their physical properties, whether by increasing the barrier
against water vapor and oxygen or by boosting microbial growth inhibition. Lysozyme,
an antimicrobial enzyme produced by animals, and peroxidase, an enzyme occurring
especially in plants, milk, and white blood cells, are related to enhancing microbial growth
inhibition in biomaterials [34–37]. Wheat straw helps improve the mechanical properties of
biopolymer-based films made from Poly(3-hydroxybutyrate-co-3-hydroxyvalerate (PHBV),
carrageenan, and alginate, with variations in its effectiveness depending on how it is
integrated into the bioplastic matrix. Regarding the results of the MatBERT model, Sentence
2 has the highest score, identifying 44 relevant ingredients with scores above 0.6. In
contrast, Sentence 3 shows the lowest scores, displaying less relevant ingredients, such as
watermelon extract.

Figure 6 shows the distribution of the top predictive masks by cumulative score
for Sentence S1. The bar chart presents the total sum of the scores obtained for each
of the masks which were considered the most probable in the various combinations of
components evaluated. As observed, the adjectives “decreased” and “increased” are
the most common, with significantly higher scores compared to other masks such as
“improved”, “reduced”, “declined”, and “dropped”. This suggests that, in the context of
bioplastic film additives, the MatBERT model was more frequently able to predict changes
related to the decrease or increase in water vapor permeability in biopolymers. As shown
in Table 2, these predictions tend to be linked to the incorporation of certain additives to
modify the mechanical properties of films that include biopolymers, such as alginate and
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carrageenan. We also carried out a more explicit testing of MatBERT to explore its ability to
predict an ingredient that increases the water vapor permeability of a film based on sodium
alginate, which is one the main ingredients in seaweed films (see Figure 2). Table 4 shows
the sentences (SA, SB, and SC) used in this test.
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Table 4. Input sentences used in the MatBERT language model to interpret the relationship between
sodium alginate and additives for increasing water vapor permeability.

Sentences

<SA> By adding [MASK] to sodium alginate, the water vapor permeability increases.
<SB> By adding an additive such as [MASK] to a sodium alginate film, the water vapor permeability increases.
<SC> Adding additives such as [MASK] to a sodium alginate film increases its water vapor permeability.

Table 5 displays the top five ingredients for each sentence. When comparing the pre-
dicted words with Figure 5, although there were variations in ingredients due to differences
in sentences, we find that output ingredient words such as starch (polysaccharide) are
predominant in most cases, along with chitosan (polysaccharide), gelatin (protein), and
glycerol (plasticizer). Additionally, there is the presence of ethanol, an organic compound
used to remove pigments and fatty acids [38], and Polyvinyl Alcohol (PVA), a synthetic
polymer utilized for bioplastic preparations [39]. The relationship between sodium alginate
and glycerol in bioplastic formulations is well documented, and the MatBERT output repro-
duces this combination. The model also predicted starch as an alternative for improving the
water vapor permeability in sentences SB and SC. Starch combined with alginate is known
not only for improving permeability but also for modifying the mechanical properties of
biofilms [40]. This literature support for the model output is promising but also limited,
given the broad generic corpus on which MatBERT was trained, primarily with inorganic
chemistry literature.

Table 6 compares two BERT models used in materials science for additive prediction,
averaging the top five outputs for sodium alginate, agar, and carrageenan using the masked
sentences from Table 4. MatBERT predicts additives commonly cited in the scientific litera-
ture with the aim of developing applications in food packaging, food preservation, and
biomedicine, using films made from polysaccharides derived from seaweed. For example,
the combination of agar and PVA with chitosan in packaging films has shown that incor-
porating natural nanocomposites can improve water vapor permeability [41]. Similarly,
the combination of gelatin with sodium alginate increases water vapor permeability when
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yarrow essential oil (YEO) is added [42]. In contrast, MatSciBERT tends to predict additives
associated with inorganic materials, reflecting the focus of its training data.

Table 5. The top five predicted ingredients for increasing the water vapor permeability of seaweed-
based films according to the MatBERT model, based on output scores. The mask is a second com-
ponent in a mixture containing sodium alginate, as specified in sentences SA, SB, and SC from
Table 4.

Predicted Masked Words

SA

chitosan: 0.1626%
starch: 0.0539%
PVA: 0.0513%
gelatin: 0.0376%
water: 0.0293%

SB

starch: 0.0757%
gelatin: 0.0371%
ethanol: 0.0349%
PVA: 0.0344%
glycerol: 0.0339%

SC

starch: 0.1038%
gelatin: 0.0567%
surfactants: 0.0498%
PVP: 0.0418%
glycerol: 0.0402%

Table 6. Comparison of BERT models in materials science.

Model MatBERT MatSciBERT

Size 2,000,000 papers 150,000 papers

Dataset
Scientific publications, journal articles, and
databases containing technical and academic
texts in the field of materials science.

Inorganic glasses, metallic glasses, alloys, and
cement and concrete from the Elsevier Science
Direct Database.

Sodium Alginate

Starch: 0.0778
Chitosan: 0.0752
Gelatin: 0.0438
PVA: 0.0369
PVP: 0.0309

Sucrose: 0.0388
Glucose: 0.0242
Urea: 0.0251
Phosphate: 0.0148
Magnesium: 0.0133

Agar

Starch: 0.0853
Gelatin: 0.0605
Chitosan: 0.0408
Glycerol: 0.0312
NaCl: 0.0258

Zinc: 0.0153
Glucose: 0.014
Methanol: 0.0125
Starch: 0.0109
Glycerol: 0.01

Carrageenan

Starch: 0.0816
Chitosan: 0.0682
Glycerol: 0.0437
Gelatin: 0.0418
PVA: 0.0344

Sucrose: 0.0314
Aluminium: 0.02
Glucose: 0.0188
Magnesium: 0.0186
Glycerol: 0.0122

4. Discussion
Recent transformer-based language models for materials science such as MatBERT

and MatSciBERT have not been specifically trained or fine-tuned for learning correlations
between ingredients and properties in a corpus of seaweed-based bioplastics. While, in
principle, it is not expected that the model outputs could be used for discussing formula-
tions of seaweed-based films, yet some of the high-scoring outputs in Table 5 are ingredients
known to be associated with water vapor permeability studies. Similar output trends are
seen when testing for mechanical properties (tensile strength), but the output word distri-
bution for ingredients (plasticizers and additives) or qualifiers (increase, decrease, good, or
poor) often contain noise that needs expert assessment. The literature support found for
some of the ingredient–property associations in Table 5 was limited [38–40]. However, the
positive correlation suggests that the family of language models based on BERT could be
valuable for the future development of bioplastic formulations after further training and
fine-tuning efforts.



Data 2025, 10, 20 12 of 15

The output of the BERT models shows that the increase in permeability is closely
related to variations in the concentrations of both the additive and the plasticizer. In
this context, the model faces limitations in accurately interpreting interactions when pro-
vided with sentences containing limited context, which hinders its ability to capture the
complexity of ingredient interactions. However, the model still demonstrates a valuable
predictive ability to identify ingredients associated with increased water vapor permeability,
suggesting its potential utility in optimizing formulations for future research.

The effectiveness of a BERT model in predicting specific elements, such as additives,
largely depends on the training data corpus. For example, a model trained with data
predominantly related to metallic materials tends to predict metal-related additives when
used with masked cues that explore the properties of these additives. This is because
the tokenization process and learning are shaped by the dominant terms and contexts
in the training data. To improve predictions in specialized areas, such as additives for
seaweed polysaccharides, it is beneficial to use a diversified or specially selected corpus.
Such a corpus should cover a wide variety of materials and their interactions with various
additives. MatBERT, for example, is trained on a wide range of materials science literature,
which provides a more complete basis for predictions in this domain.

5. Conclusions
In conclusion, our study provides ways to analyse common ingredient combinations

in seaweed-based bioplastics and their relationship to properties of interest. We have
identified critical ingredients such as starch, cellulose, chitosan, PLA, and their relationship
to properties such as biodegradability using a word co-occurrence matrix. The applica-
tion of the MatBERT model enabled us to explore new and less common combinations of
polysaccharides, additives, and plasticizers. Using the model revealed alternative com-
binations that are underrepresented in the literature. This automated method facilitates
a deeper understanding of the relationship between ingredients and properties, guiding
the development of more effective seaweed bioplastic formulations. The model empowers
innovators to swiftly identify ingredient combinations tailored to specific applications,
enhancing the potential for experimentation with rare and underexplored combinations.
This can be used to guide the development of seaweed bioplastic formulations, allowing
innovators to quickly identify ingredient combinations of use to specific applications.

Our co-occurrence study has limitations with respect to the accuracy of the associations
suggested between the ingredients and the properties of bioplastics, originating from the
relatively small corpus size of published scientific abstracts and the bag of words. The
analysis of the Masked Language Model outputs for terms within the bag of words is
primarily limited by the envisioned mismatch between the general materials science corpus
on which the language models were trained and the domain-specific corpus related to
seaweed bioplastics. In future studies, these limitations can be addressed by expanding the
text mining and data extraction processes using full-length articles including information
on the fabrication and synthesis conditions of biofilms, which has been shown to be useful
during the fine-tuning steps of more advanced Large Language Models [43]. Specific
metrics for assessing the quality of the predicted correlations between the ingredients
and the properties of biofilms and reducing the amount of expert assessment required
also need to be developed before automated bioplastic formulation algorithms can be
deployed. Addressing these data and model gaps is essential for advancing research and
practical applications.
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